Arithmetic Properties of Class Numbers of Imaginary Quadratic Fields

نویسندگان

  • Safuat Hamdy
  • Filip Saidak
چکیده

Under the assumption of the well-known heuristics of Cohen and Lenstra (and the new extensions we propose) we give proofs of several new properties of class numbers of imaginary quadratic number fields, including theorems on smoothness and normality of their divisors. Some applications in cryptography are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class Numbers of Quadratic Fields Determined by Solvability of Diophantine Equations

In the literature there has been considerable attention given to the exploration of relationships between certain diophantine equations and class numbers of quadratic fields. In this paper we provide criteria for the insolvability of certain diophantine equations. This result is then used to determine when related real quadratic fields have class number bigger than 1. Moreover, based on criteri...

متن کامل

Indivisibility of class numbers of imaginary quadratic fields

We quantify a recent theorem of Wiles on class numbers of imaginary quadratic fields by proving an estimate for the number of negative fundamental discriminants down to −X whose class numbers are indivisible by a given prime and whose imaginary quadratic fields satisfy any given set of local conditions. This estimate matches the best results in the direction of the Cohen–Lenstra heuristics for ...

متن کامل

L - Functions and Class Numbers of Imaginary Quadratic Fields and of Quadratic Extensions of an Imaginary Quadratic Field

Starting from the analytic class number formula involving its Lfunction, we first give an expression for the class number of an imaginary quadratic field which, in the case of large discriminants, provides us with a much more powerful numerical technique than that of counting the number of reduced definite positive binary quadratic forms, as has been used by Buell in order to compute his class ...

متن کامل

Computation of class numbers of quadratic number fields

We explain how one can dispense with the numerical computation of approximations to the transcendental integral functions involved when computing class numbers of quadratic number fields. We therefore end up with a simpler and faster method for computing class numbers of quadratic number fields. We also explain how to end up with a simpler and faster method for computing relative class numbers ...

متن کامل

Arithmetic of singular moduli and class polynomials

We investigate divisibility properties of the traces and Hecke traces of singular moduli. In particular we prove that, if p is prime, these traces satisfy many congruences modulo powers of p which are described in terms of the factorization of p in imaginary quadratic fields. We also study generalizations of Lehner’s classical congruences j(z)|Up ≡ 744 (mod p) (where p 11 and j(z) is the usual ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006